以数据驱动的图像合成领域的一个关键问题是如何确保合成后的图像看起来真实。在论文的第 I 部分,朱俊彦采用一种判别方法来解决这类问题的一个案例,他训练一个分类器来评估合成图像的逼真度。由于难以获取足够的人工标注训练数据来判断图像是否真实,他学习对真实图像和自动生成的合成图像进行分类,不管这些图像看起来真实与否。他惊奇地发现:得出的分类器可以预测新的合成图像的逼真度。此外,逼真度分数可通过学得的变换来迭代更新图像,进而改善合成图像的逼真度。该研究可以被视为条件生成对抗网络(GAN)架构的「先锋」。他还开发了一种类似的判别学习方法,以改善人像的照片美感(SIGAsia 2014)。
在第二部分中,作者使用相反的生成方法建模自然图像,将图像编辑工具的输出控制在该流形上。他基于典型的图像平均模型(image averaging model,SIGGRAPH 2014)和近期的生成对抗模型,构建了实时数据驱动探索和编辑界面。后者起到作用,相关软件 iGAN 是 GAN 首次应用于实时应用程序中,它对 GAN 在社区中的流行起到很大作用。