关于科学学的研究最早使用的社会科学领域的传统方法,包括文献综述( literature reviews),专家访谈(expert interviews)和调查(surveys)等。然而,传统方法更注重针对单个或多个领域的详尽研究,并不能直接分析整个学术领域的所有学科。近年来,出现了基于复杂网络分析方法的科学学研究,主要依据文章引用关系、作者合作关系等建立网络,但这种方法仅限于学术空间中的正式关联(formal linkages),不考虑学科之间的非正式交流,大量真实存在的学术隐藏结构被忽略。
对于每个学科来说,研究过程中常常会使用其他学科的知识,同时也会促进其他学科的研究。因此,文章通过连边来刻画学科间的这种关系。对于学科 A 与学科 B,学科A的所有论文中使用了的学科B的专业术语数为α,学科B的所有论文中使用了的学科A的专业术语数为 β,学科 A 与学科 B 之间的连边粗细刻画了 α-β 的大小,当α-β0,类比贸易网络,我们称学科 B 为净出口学科,学科A为净进口学科,连边颜色为净出口学科B的颜色,否则为学科 A 的颜色。其中,大领域内的学科交叉连边被画在圆外,跨学科领域的学科交叉被画在圆内。
我们还可以发现,STEM 学科与人文学科存在显著的分界线,很少有文章能跨越这个鸿沟。
图 2(A)展示了 两条曲线分别在计算机科学(Computer Science)学科的所有专业术语中,关于遗传学和基因组学(Genetics and Genomics)的专业术语比例(蓝色);在遗传学和基因组学学科的所有专业术语中,关于计算机科学的专业术语比例(紫色),其中误差棒(Error Bar)表示为阴影部分。
对于学科 A 和学科 B,比较学科 A 论文中使用学科 B 的专业术语数 α 与学科 B 论文中使用学科 A 的专业术语数 β,如果αβ,即学科 B 为净出口学科,学科 A 为净进口学科,则学科 B 的净资源得分+1,学科A的净资源得分-1。所有学科之间两两比较,净出口次数与净进口次数之差即为学科的净资源得分,记为 S,净资源得分刻画了学科的相对影响力大小。
图 B 列出了图A中高亮散点的详细信息。在图 B 中,每个学科的论文数量作为学科规模(x),每条折线代表一个学科的影响力发展轨迹,折线上的七个点分别表示该学科在1980年、1985年、1990年、1995年、2000年、2005年、2010年时的净资源得分(S)及学科规模(x)。其中,棕色的线是数学;人文学科的红线是哲学(Philosophy)、性别和种族研究(Gender & Ethnic Studies);蓝色的线是计算机科学,紫色的线是生态学和进化生物学和微生物学,绿色的线是动物科学。