牛津大学的研究人员Dr. Jiang, Dr. Santiago和Prof. Foord, 最近在《通讯 - 化学》上发表的一篇论文Nanocarbon and nanodiamond for high performance phenolics sensing为酚类化合物的检测提供了几点新的思路。他们系统地研究了主流的三种碳材料:石墨烯(sp2杂化),纳米金刚石(sp3 杂化)和纳米碳(sp2+sp3),用于检测苯酚类和二苯酚类等四种不同的酚类化合物。结果表明,虽然石墨烯和纳米碳电极依然有严重的失活问题,但是纳米金刚石电极对于酚类物质检测的稳定性非常强。这是由于sp3杂化的金刚石有很好的化学惰性。这是首个利用纳米金刚石的超强稳定性检测酚类物质的报道。
摘要:Phenolic compounds are pollutants of major concern, and effective monitoring is essential to reduce exposure. Electrochemical sensors offer rapid and accurate detection of phenols but suffer from two main shortcomings preventing their widespread use: electrode fouling and signal interference from co-existing isomers. Here we demonstrate a potential solution based on environmentally friendly and biocompatible carbon nanomaterials to detect monophenols (phenol and cresol) and biphenols (hydroquinone and catechol). Electrode fouling is tackled in two ways: by introducing electrochemically resistant nanodiamond electrodes and by developing single-use nanocarbon electrodes. We provide a comprehensive analysis of the electrochemical performance of three distinct carbon materials (graphene, nanodiamond and nanocarbon). Nanocarbon exhibits the lowest detection limit below 10−8M, and one order of magnitude higher sensitivity than the other carbon nanomaterials. We detect co-existing phenol isomers with nanocarbon electrodes and apply it in river water and green tea samples, which may pave the way towards low-cost industrial scale monitoring of phenolic compounds.
期刊介绍:Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research.