近期,中国科学院上海应用物理研究所樊春海研究员(现为上海交通大学教授)和中国科学院生物物理研究所张先恩研究员等在《国家科学评论》(National Science Review, NSR) 发表综述论文Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing,总结了基于蛋白质和DNA纳米结构的生物传感纳米界面组装原理、性能调控和生物分子检测,分析了存在的问题和技术难点,强调生物分子空间取向控制的重要性,并展望了在精准诊疗方面的应用。
蛋白质分子(抗体和酶)的构象和活性会直接影响界面抗原识别或电子转移效率。在实际中,物理吸附或共价偶联的蛋白质分子易与界面发生多种相互作用,从而改变天然构象,降低活性。为解决这些难题,人们提出了蛋白质界面工程。例如通过中间蛋白分子(protein A or protein G)固定抗体的Fc段,保证抗体分子的有利界面朝向和活性位点的充分暴露,从而提升抗原-抗体结合效率和酶的催化活力(图2a)。此外,抗体Fc段的糖基和铰链区的二硫键也常常被激活,用于抗体的直接共价偶联并保持抗体分子在界面的有序性(图2b)。值得一提的是通过融合蛋白技术可在目标蛋白分子基因内插入柔性的肽断编码序列,精确定制功能性蛋白分子,实现界面抗体可控组装(图2b)。