论文标题:Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers
期刊:Nature Communications
作者:Yufei Zhong, Martina Causa’ et.al
发表时间:2020/02/11
数字识别码:10.1038/s41467-020-14549-w
微信链接:点击此处阅读微信链接
近日,瑞士伯尔尼大学的Natalie Banerji教授与国家纳米科学中心的周二军研究员合作在Nature Communications上发表题为"Sub-Picosecond Charge-Transfer at Near-Zero Driving Force in Polymer:Non-Fullerene Acceptor Blends and Bilayers" 的研究论文。该研究针对非富勒烯受体体系中电荷驱动力大小对本征电荷转移速率的影响进行了精细的探究,证实了本征电荷转移过程不论在何种形貌下都保持在亚皮秒(< 10^-12 秒)的超快速率。
摘要:Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.