3.数字减影血管造影(Digital subtraction angiography,DSA)DSA强化血管造影的分辨率,显示细小血管,是促进医学影像学发展的手段之一。DSA分为两种:
(1)静脉数字减影血管造影(Intravenous DSA,IV,DSA)DSA极大地强化动脉内低浓度造影剂的影像,故静脉注射造影剂能使周身大部分动脉较好地显影。此法称为Iv DSA。IV DSA的优点是比动脉插管创伤性大,操作简易。缺点是需要增加造影剂的用量,以增大血管内碘浓度,致使其应用仍有限制,不能取代动脉插管法。
(2)动脉数字减影血管造影(Intraarterial DSA,IA DSA);通过动脉插管将导管直接送至特定部位前的动脉(见下述优点③),注射造影剂照相。经数字减影处理后,形成IADSA影像,其优点是,①较清晰地显示动脉小分支。②减少造影剂用量,比常规动脉造影少用50%造影剂。③不需要将导管深入插至特定部位的动脉(如同选择性或超选择性造影那样),例如在锁骨下动脉注射可显出椎动脉,在腹主动脉下部注射可显出肾动脉等等。④数字信息可储存并适时显示,有利于介入放射学的检查。
DSA的限制:①血管影象重迭,同一部位多血管相互重迭,故需要多体位投照,例如正侧位同时投照。②需要病人密切合作,避免一切随意的运动。③DSA有利于显示小动脉支,但对0.2mm以下的微小血管尚不能显示。④非自主亦即不随意的运动,如吞咽、呼吸、及胃肠蠕动影响图像清晰度。
4.电子计算机体层摄影(Computed tomography,简称CT)是近十年来发展迅速的电子计算机和X线相结合的一项新颖的诊断新技术。其主要特点是具有高密度分辨率,比普通X线照片高10~20倍。能准确测出某一平面各种不同组织之间的放射衰减特性的微小差异,以图像或数字将其显示,极其精细地分辨出各种软组织的不同密度,从而形成对比。如头颅X线平片不能区分脑组织及脑脊液,而CT不仅能显示出脑室系统、还能分辨出脑实质的灰质与白质;如再引入造影剂以增强对比度,对其分辨率更为提高,故而加宽了疾病的诊断范畴,还提高了诊断正确率。但CT也有其限制,如对血管病变,消化道腔内病变以及某些病变的定性等。(参考第七章CT检查与诊断)。
5.磁共振(Magnetic resonance,MR)或磁共振成像(Magnetic resonance Image,MRI) 是利用原子核在磁场内共振而产生影像的一种新的诊断方法。为非射线成像,亦为无创伤性检查方法之一种,自80年代应用于临床后,其检查技术发展非常迅速且日臻完善,成为影像诊断学中重要的成员之一。
MRI是利用含奇数质子的原子核(如1H、13C、19F、23Na)自旋运动(Spin)的特点,置于外加的强大均匀磁场(称为主磁场)内,使原排列杂乱的原子核在磁力作用下而按周围磁场方向排列成行,这种原子核围绕主磁场轴旋转的现象,称为旋进(precession)。自旋和旋进是奇数质子原子核的两种特性,不同元素原子核的旋转频率各异。因质子旋进无聚合性,磁化向量是顺主磁场力线方向,无切割磁力线的力,故不产生电压变化,以致不能检测出磁场变化的信号,为测出其磁场变化,必须将顺磁力线的净磁化移位,因而在外加磁场内,又加用射频脉冲,使射频脉冲在质子共振频率上垂直作用于磁场,则净磁化移位,在射频脉冲结束后,可接受到因磁场改变而引起的电压变化。简述之,射频脉冲的频率如接近某元素的原子核的旋进频率,该原子即被激发,并改变原子核磁轴的偏斜方向,这一过程称为MRI。发生射频脉冲是间断的,所产生的电磁(能量)经接受器收集并转换为电信号,再经一系统处理。图像重建等,形成供诊断使用的MRI图像。除影像诊断外,还可利用高磁场(1.5T或2.0T)定域频谱分析(Magnetic Resonance Spectroscopy),显示该区域的代谢过程,利用某些疾病的早期诊断。MRI与CT相比较,其优越性是非射线成像,且可任何方向切层扫描;如冠状面、矢状面、横断面以及斜面等,MRI与CT在成像方面还有不同之处是有多个参数,如质子密度,T1与T2弛豫时间。目前软件的开发,还可不用造影剂而显示血管,称为MRA(Magnetic Resonance Angiography)。MRI也有不足之处,如成像时间长,对钙化不灵敏,费用较昂贵等。
4/4 首页 上一页 2 3 4
Copyright © 2007-至今 yijy.com,All Rights Reserved 医家园